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will be no charge for electronic mail distribution - 
contact should be made with D.Bird@uk.ac.bath.gdr. 
Distribution by floppy disc will be in the form of 5¼ in 
discs on PCs running under DOS. In this case there 
will be a handling charge of US $20. 

5. Discussion 

Subroutine A T O M  provides a simple means of con- 
structing elastic and absorptive potentials from 
individual atomic contributions. How useful are the 
results likely to be? For the elastic potential, the use 
of atomic potentials is known to be an excellent 
approximation. Even for the lower-order Vg, where 
effects due to bonding can be observed, the difference 
between the actual and neutral-atom potential 
coefficients is very small (e.g. Zuo, Spence & O'Keeffe, 
1988). For the absorptive potential, the use of atomic 
potentials is certain to be a poorer approximation, 
but it is very difficult to be quantitative about this. It 
also has to be recognized that TDS is only one contri- 
bution to Vg, and that the use of isotropic Debye- 
Waller factors introduces further inaccuracy. (The 
question of what is the best average Debye-Waller 
factor to use in any given situation when working 
with anisotropic crystals is rather difficult and we do 
not attempt to address it here). Our view is that the 
calculations presented here are about the best that 
can be done in a general fashion. We expect that they 
will reliably reflect trends in the absorptive potential 
as a function of s and M, and will show the correct 
behaviour of the ratio of elastic to absorptive potential 
for light and heavy atoms. In this way our results 
should provide a much better guide to the form of 
the absorptive potential than any ad hoc rule. Given 

that they can be incorporated into diffraction calcula- 
tions in a very straightforward way, we suggest that 
they should be used, if only to see whether the 
inclusion of absorption in a rather more rigorous 
fashion makes any significant difference to the final 
results. 
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Abstract 

The influence of absorptive potentials on high-energy 
electron diffraction amplitudes is analysed, with an 
emphasis on effects which are specific to diffraction 
from non-centrosymmetric crystals. It is shown that 
the phase difference which then exists between the 
elastic and absorptive potential coefficients can give 
rise to a significant asy.mmetry between +g and - g  

reflections. This phase difference is calculated for a 
number of important III-V semiconductors. In many 
diffraction calculations it is assumed that the phase 
difference is zero - it is argued here that such calcula- 
tions cannot be truly quantitative. The inclusion of 
absorption by perturbation theory is shown to be 
valid, but only if the change in the eigenvectors as 
well as the eigenvalues is taken into account. It is 
shown that within two-beam theory the +g, - g  
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asymmetry in non-centrosymmetric crystals arises 
purely from changes in the eigenvectors. 

I. Introduction 

The aim of most dynamical diffraction calculations 
is to compute a set of diffracted wave amplitudes 
from which intensities may be derived and compared 
with experiment. In this paper we ask the simple 
q u e s t i o n - h o w  are these amplitudes affected by 
absorption? In a previous paper (Bird & King, 1990) 
the construction of realistic absorptive potentials was 
discussed - here we make use of those results to make 
quantitative statements about the influence of absorp- 
tion on diffracted amplitudes. Many previous authors 
have considered this question (e.g. Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1977; Humphreys, 
1979; Dederichs, 1972). The new work presented here 
is a discussion of those effects which are specific to 
non-centrosymmetric crystals. In this case, the Four- 
ier coefficients Vg and Vg of the elastic and absorptive 
potentials repectively are both complex numbers and 
there is no reason in principle why the phases, ~pg 
and ~pg, of these coefficients should be the same 
(Gevers, Blank & Amelinckx, 1966; Snykers, Serneels, 
Delavignette, Gevers, Van Landuyt & Amelinckx, 
1977; Bird, James & King, 1989; Bird & King, 1989). 
However, in the vast majority of diffraction calcula- 
tions it is assumed that the absorptive potential is 
directly proportional to the elastic potential, in which 
case the phase difference, A~pg = ~pg- ~pg, vanishes. 

Bird & King (1990) used the Einstein model of 
lattice vibrations to calculate the thermal diffuse scat- 
tering (TDS) contribution to the absorptive potential. 
For reflections other than g =0,  TDS provides the 
major source of absorption (e.g. Radi, 1970) and 
although the Einstein model is by no means exact, it 
can provide a useful estimate of A~pg for any non- 
centrosymmetric structure. In § 2 we present results 
for a number of important I I I -V semiconductors. It 
is shown that a non-zero A~pg makes a significant 
difference to the kinematic diffraction intensity 
because it produces corrections of order [Vg/Vg[, 
while if A~p -- 0 (as it is in centrosymmetric structures), 
the correction is of order [ Vg/Vg[ 2. Another important 
point is that this first-order correction changes sign 
for g ~ - g .  It follows that in non-centrosymmetric 
crystals an asymmetry exists between +g and - g  
reflections which arises entirely through absorption, 
via the phase difference Aqgg. In § 3 a more general 
analysis of absorption is presented, based on a per- 
turbation expansion in the ratio IV'g~ Vg[. We find that 
this approach is valid, but only if changes in the 
eigenvectors (i.e. Bloch wave coefficients) are taken 
into account, as well as changes in the eigenvalues 
(i.e. the dispersion surface). In many perturbative 
calculations only the effect on the eigenvalues is 
included (e.g. Humphreys,  1979). In fact, an analysis 

of two-beam theory shows that the A~p-induced asym- 
metry between +g and - g  reflections is contained 
entirely within the perturbation of the eigenvectors. 
Two basic conclusions are drawn from this work. The 
first is that quantitative diffraction calculations should 
include absorption either by a full perturbation treat- 
ment or non-perturbatively, via computation of the 
complex non-Hermitian eigenvalue problem. The 
second is that even if this is done it is essential to 
allow for the phase difference Aq~g in non-centrosym- 
metric crystals. As electron microscopy becomes 
increasingly quantitative (e.g. Zuo, Spence & 
O'Keeffe, 1988; Bird, James & Preston, 1987; Zuo, 
Spence & H0ier, 1989) it is expected that the accurate 
inclusion of absorption into diffraction calculations 
will become of major importance. 

To end the introduction we run quickly through 
the fundamentals of dynamical theory in order to set 
up the equations that will be used and to introduce 
our notation. Within the forward-scattering and pro- 
jection approximations the basic equation governing 
the fast electron wavefunction qO is (e.g. Howie, 1966; 
Berry, 1971; Bird, 1989) 

[ -V~+U(R)]~ ( r )=2 ikO~/Oz ,  (1) 

where k is the magnitude of the incident electron 
wavevector. The division of r into transverse, R, and 
longitudinal, z, coordinates is made explicit in (1). z 
is the direction of projection, and the R plane is 
perpendicular to this. This equation is exactly 
analogous to the time-dependent Schr6dinger 
equation where R is the spatial coordinate and z takes 
the place of time - this similarity will be exploited in 
the perturbation theory of § 3. U(R) is the effective 
'potential '  which is related to the actual projected 
potential V(R) by 

U(R) = (2yrno/h 2) V(R) 

= Z Uc exp ( iG.  R). (2) 
c 

We have expressed the periodic potential as a sum 
over Fourier coefficients, Uc, here; the G represents 
the two-dimensional set of zero-layer reciprocal- 
lattice vectors. The solutions to (1) are separable and 
can be expressed in the form of Bloch waves, ~(J), 
each of which has an excitation amplitude e(J): 

¢~(J) y~ (J) = Cc  (K) e x p [ i ( K + G ) . R ]  
G 

x exp [-is(J)(K)z/2k] (3a) 

q~ = E  e(J)~(J). (3b) 
J 

The Bloch wave coefficients c,(J) and transverse ener- 
gies s (j) are the eigenvectors and eigenvalues respec- 
tively of the many-beam equations 

,r IC(J) = O, (4) E {[(K+ G)2 -  S(J)]6G.G '+ I-/G-G'J- G' 
G'  
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where K is chosen to match the component of the 
incident wavevector parallel to the specimen surfaces. 
Finally, for a non-absorbing potential, the boundary 
condition at the entrance surface, z = 0, is satisfied 
by setting e (~)= C(o j)*. 

So far, nothing has been said about the form of 
the potential U(R). We now write it as a total poten- 
tial, U t ° t ,  which is divided into elastic, U, and absorp- 
tive, U', parts 

Ut°t(R) = U(R)-[- iU'(R). (5) 

The potential coefficients in (2) can therefore be 
expressed as 

UtOt t • t G =--[UGIexp(iq~G)--iIUGIexp('~G), (6) 

where the coefficients are written out explicitly in 
terms of their magnitudes, I UGI and lull,  and phases, 
~0G and Ch. The minus signs are included for con- 
venience in (6) to indicate that the potential felt by 
the fast electrons is basically attractive and therefore 
negative. In non-centrosymmetric crystals there is no 
reason why ~o6 should equal ~oh, although, as dis- 
cussed above, it is often assumed that this is so. 

2. Application to II l -V semiconductors 

We start by re-writing the potential coefficients (6) in 
terms of their overall amplitude and phase. This pro- 
ceeds as follows: 

UtOt _ t • t 
G - - I u d  exp (i~OG)--iIUGI exp (Z~G) 

= - I U G I  exp 1 + RG sin (A~oc) 

+ iRG cos (A~oc)] 

"" --[ UG[ exp (i~0G) [ 1 + Rc sin ( A~OG)] 

X [1 + iRG COS (A~oG)] 

- - l u l l  exp ( iCG)[ 1 + RG sin (ACG) ] 

x exp [iRe cos (ACpG)] 

= - El uGI +luGI sin (A pc)] 

xexp{i[~oc+ RGCOS(A~oc)]}, (7) 

where A~pG= CG-~,h (as in § 1) and RG=IU'dUcl. 
In the third and fourth steps it is assumed that Rc is 
small - the final expression is correct to order RG. To 
this order, therefore, the amplitude and phase of the 
G coefficient are corrected by absorption by additive 
factors I U~I sin (A~oc) and Rc cos (A~oc) respectively. 
It can be seen that the phase difference A~oc plays a 
vital role in these expressions. This will be discussed 
in more detail later, but we note at this stage that 
A~oc is independent of the choice of origin and is 
therefore a phase-invariant quantity (e.g. Bird, James 
& Preston, 1987). It is also interesting to distinguish 
between the G = 0 and G ~ 0 components. In writing 
UtOt c in the form (7) in may seem that the physical 
meaning of absorption in terms of loss of electron 

flux has been lost, because we have lost the distinction 
between real and imaginary potentials. This can be 
overcome if it is remembered that Uo and U~ can be 
incorporated directly (and exactly) into the transverse 
energy s °) with a change of definition s(J)~ 
s°)-]Uo[-ilU~l. The U~ term then gives a uniform 
attenuation to all Bloch waves (3a). The G ~ 0  (i.e. 
anomalous absorption) terms act in a different way 
and in a sense do not contribute to overall absorp- 
t ion-  instead (at least to lowest order) they simply 
redistribute intensity between the different Bragg 
reflections. 

An important feature of (7) is that +G and - G  
behave differently. Without absorption i r t ° t  i" r t ° t * .  t . j  G = t . j _  G , 

with absorption this is still true separately of the real 
and absorptive parts (i.e. I Uc] = Iu -GI ,  ~ G - - - ~ - ~ ,  
and similarly for U~;) but when combined we find 
(to first order in Re) 

U t O t / - / - t o t  ~ _ ~ -  I u~l 2 exp [2iRc cos (ACG)] 
(8) 

Uc I = [Uc[ 2 + 2[ Uc UGI sin (ACG). t o t  2 t 

The second of these is the modulus squared of the 
potential coefficient and is the quantity that governs 
the intensity of diffraction into reflection G within 
the kinematic (i.e. single-scattering) approximation. 
For - G ,  sin (A~pc) changes sign, so the magnitude of 
the +G and - G  coefficients are different, as are the 
+G and - G  kinematic intensities. Equation (8) 
reveals two important properties of this asymmetry-  
first, it enters to order Rc and, second, it is found 
only for non-centrosymmetric structures. For cen- 
trosymmetric crystals, ACe must equal zero or 7r in 
which case the +G and - G  intensities are the same. 
This is true to all orders in Rc,  as can be seen in (7) 
before it is approximated. Absorption does change 
the magnitude of ~,.,, G f T t ° t  in centrosymmetric structures, 
but only to order R 2 and with no +G, - G  asymmetry. 

How important are these effects due to a non-zero 
A~c? To answer this it is necessary to calculate both 
RG and A~c for the non-centrosymmetric structure 
under consideration. As an example we have evalu- 
ated the absorptive potential for four important I I I -V 
semiconductors using the method described by Bird 
& King (1990). The results for the magnitude of 
UdUo (expressed as a percentage), R~ (at an 
accelerating voltage of 200 kV, and expressed as a 
percentage) and the magnitude of A~c (in degrees) 
are shown in Table 1. Values have been calculated 
at two temperatures, 80 and 300 K; the relevant 
Debye-Waller factors are taken from Reid (1983). It 
can be seen that Rc is a rapidly varying function of 
G, being largest for the weaker h + k + l = 4n + 2 type 
(where n is an integer) reflections. As a rough guide, 
its value at 80 K is about half that at 300 K. The A~oc 
values are insensitive to temperature and are non-zero 
only for the hkl-odd-type reflections. The common 
assumption in electron-diffraction calculations is that 
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Table 1. Values of the potential coefficients for the lowest-order reflections in GaAs, GaP, InAs and InP at 
80 and 300 K 

G a A s  (300 K)  G a A s  (80 K)  G a P  (300 K)  G a P  (80 K)  

g lug~ gol levi I a,P~I I gd Uol I n,,I I~'~1 I Ud Uol levi l a~l I gd Uol led Ia~,,I 
000 100"0 2"6 0"0 100"0 1"4 0"0 100"0 1"6 0"0 100"0 0"9 0"0 
111 45-2 3"9 0"9 45"7 2.1 0"8 43.2 2"9 20"8 43.6 1"6 19"8 
200 3-1 5"4 0"0 3"2 2-9 0"0 6"7 12"0 0"0 6"7 6"4 0"0 
220 41"8 5"6 0.0 43"0 3"1 0"0 37.9 3"9 0"0 38-9 2.2 0"0 
311 24"9 6"4 1"6 25.9 3"5 1"6 22"6 5"0 16-6 23"4 2"8 15"5 
222 1"2 12"5 0-0 1"3 6"7 0"0 6"4 11"7 0"0 6"5 6"4 0"0 
400 28"3 7"5 0"0 29"9 4"2 0"0 24.6 5-4 0-0 25"8 3"1 0"0 
331 18"0 8-0 2.5 19"2 4"5 2"5 16"0 6"4 13"6 17"0 3.6 12.9 
420 0"4 28"7 0"0 0"6 14"6 0"0 5"8 11"8 0"0 6"1 6"5 0"0 
422 21 "8 8"8 0-0 23"7 5"0 0"0 18"5 6"5 0"0 19-9 3"8 0"0 
333 14"2 9-3 3-0 15"6 5"3 3"0 12"6 7"5 11"9 13"6 4.3 10"8 
440 17"7 9"9 0'0 19"8 5"7 0"0 14.9 7"4 0"0 16"4 4"3 0"0 
531 11.7 10.2 3-1 13.2 5.9 3.1 10.3 8.4 11.1 11.4 4.9 9"9 
600 0"1 104"9 0"0 0"2 35"1 0"0 4.5 13"1 0"0 4"9 7.5 0"0 

I n A s  (300 K)  I n A s  (80 K)  I n P  (300 K)  I n P  (80 K)  

000 100.0 3.8 0.0 100.0 2.0 0.0 100.0 3.2 0.0 100.0 1.7 0.0 
111 48.1 5.7 13.8 48.7 3.1 13.6 47.9 5.7 22.0 48.5 3.1 21.3 
200 9.2 15.8 0.0 9.6 8.3 0.0 18.4 13.1 0.0 18-9 6.9 0.0 
220 45.7 7.3 0-0 47.1 4.0 0.0 42.6 6.6 0.0 43.9 3.6 0.0 
311 27.8 8.8 12.3 29.1 4.8 12.1 26.9 9.0 18.3 28.2 5.0 17.4 
222 6.3 20.2 0.0 6.9 10.7 0.0 13.0 16.4 0.0 14.0 8.7 0.0 
400 31.3 9.6 0.0 33.3 5-4 0.0 28.2 8.9 0.0 30.0 5.0 0.0 
331 20.2 10.9 11.4 21.8 6.1 11.2 19.2 11.3 16.1 20.8 6.4 15.0 
420 4.7 23.4 0.0 5.6 12.5 0.0 10.3 18.6 0.0 11.6 10.1 0.0 
422 24.0 11.4 0.0 26.4 6.4 0.0 21.1 10.6 0.0 23.2 6.1 0.0 
333 15.8 12.5 11.1 17.6 7.2 11.0 14.8 13.1 15.0 16.7 7.5 13-8 
440 19.4 12.7 0.0 22.0 7.4 0.0 16.7 12.1 0.0 19.0 7.1 0.0 
531 12.9 13.9 11.2 14.9 8.1 11.2 12.0 14.7 14.7 13-9 8.6 13.3 
600 2.7 31.5 0.0 3.7 16.8 0.0 6.7 22.8 0.0 8.3 12.7 0-0 

Rc = 10% and ACG = 0. A glance at Table 1 shows 
that this is a very crude approximation. 

The behaviour of Aq~a can be understood if the 
potential coefficients are written in the form (Bird & 
King, 1990) 

Uc aCfA(G) +fB(G) exp [ - i ( h  + k + I) 7r/2] 

U~; ocf~(G) + f ~ ( G )  exp [ - i ( h  + k +/ )  7r/2] 
(9) 

where fA, n and f~,,~ are the elastic and absorptive 
form factors respectively for the group III element 

1 1 (A) at (0, 0, 0) and the group V element (B) at (z, z, ¼). 
For hkl-even reflections, both Uc and U~; are real, 
so the phase difference A~c is zero. For hkl-odd 
reflections both UG and U~; have phases which are 
not equal to one another. The magnitude of the phase 
difference depends only on the magnitude of G (Table 
1), but its sign is a rather more subtle quantity. In 
calculations of the absorptive potential (e.g. Bird & 
King, 1990, and references therein), it is generally 
found that the absorptive form factor increases more 
rapidly with atomic number than the elastic contribu- 
tion, that is, f ' / f  increases with Z. (This result must 
be used with care, however, because the Debye- 
Waller factor also plays an important role, and lighter 
atoms with a large thermal vibration amplitude may 
have a larger f ' / f . )  From (9), A~c for hkl-odd reflec- 
tions can be written 

Aq~c = -t- [ tan- I  (~-~) - tan-I  Itf--~A/j, (10) 

where the plus sign corresponds to reflections with 
h + k + l = 4n - 1 and the minus sign to those with 
h + k + l = 4 n + l .  If the group III element is the 
heavier atom (as in InP, GaP and InAs), then A~c 
will be positive for 4n - 1 type reflections and negative 
for 4n + 1 type reflections because f'B/f'm is smaller 
thanfB/fa. The converse is true if the group V element 
is heavier (as in GaAs). This also explains why ACe 
is much larger in InP than in GaAs, because the more 
different the atomic species, the greater is the 
difference to be expected between the two terms in 
(10). A similar effect is expected to be observed in 
other non-centrosymmetric structures. 

From (8) and the data of Table 1 we can calculate 
the difference in kinematic intensity between +G and 
- G  reflections (or between any 4n + 1 and 4n - 1 type 
reflections in a given family of {G}s). The relative 
difference is given by 

(AIG/IG)kin~--4RG sin (Aq~G). (11) 

For InP at 300 K this becomes 8.5, 11.3, 12.5, 13.6 
and 14.9% for the 111,311,331,333 and 531 reflec- 
tions respectively. These represent the largest values, 
for the other materials in Table 1 the values will be 
smaller (especially for GaAs) and will decrease at 
lower temperatures. However, the data in Table 1 
show that a 10% difference between +G is by no 
means exceptional. Although this refers to the 
squared modulus of the potential coefficients, it still 
means that the amplitudes themselves can differ by 
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around 5%. In truly quantitative work it is clear that 
effects of this magnitude should be taken into account. 

3. Perturbation theory 

We now turn to a more general treatment of absorp- 
tion which involves including the absorptive potential 
by perturbation theory. The aim is to derive 
expressions for the change in elastic diffraction ampli- 
tudes to first order in the absorptive potential. In 
order to show exactly where the results come from, 
the problem is tackled using both time-dependent 
and time-independent methods. They yield the same 
results, but only if the effect on the eigenvectors is 
taken into account as well as the more familiar change 
in the eigenvalues (see also Rez, 1979). 

In a time-d~pendent formalism we go back to the 
original diffraction equation (1) with U(R) being the 
elastic potential. The absorptive potential U'(R) is to 
be included as a perturbation which causes scattering 
of the original Bloch states into other states, thus 
leading to a formulation of the problem in terms of 
z- (i.e. 'time-') dependent Bloch wave amplitudes. In 
this approach the Bloch waves remain those of the 
elastic potential, but their amplitude varies with 
depth. Without the perturbing potential, of course, 
these amplitudes would be constant. Green's function 
methods (e.g. Schiff, 1968) are used to include the 
absorption. The total wavefunction is written 

(b(R, z )=  (b0(R, z )+  ~ dR' dz '~(R, z; R', z') 

x iU' (R ' )CI)o(R ' , z ' )+. . . ,  (12) 

where q)0 is the unperturbed elastic wavefunction 

ePo = Y~ C(d )* E (J) C(; (K) exp [ i ( K + G ) .  R] 
j G 

x exp [- is(J)(K)z/2k]  (13) 

and i~U'CI)o is the first-order correction. The Green 
function obeys 

[ -  V 2 + U ( R ) -  2ikO/Oz]~(R, z; R', z') 

= - 6 ( R ' - R ) ~ ( z ' -  z) (14) 

and is given by 

~(R, z; R', z ' )=  (2ik)-~(47r2) -~ O ( z -  z') 

X ~ ~ AI~' I ' -~(J ' ) ( IZ"~I~(J ' ) :~{I["I  ~a,~ ~'-'G k a~" ] ~ " G '  \ a l ]  
j ' G G '  

x exp [ i ( K ' + G ) .  R] 

x exp (- is(J ' )z /2k)  

x exp [ - i ( K ' +  G') .  R'] 

x exp (is(J')z'/2k) (15) 

where the K' integral is over one Brillouin zone of 
the zero-layer reciprocal lattice. O(z)  is the step func- 
tion, O(z )=O for z < 0  and O ( z ) = l  for z > 0 .  

Equations (12), (13) and (15) are then combined to 
give the amplitude at the exit surface z = t: 

A(; = Y, C(o j)*c'(j),_.(; exp ( - i s (J) t /2k)  
J 

-~ ,  (U~j't /2k) c'(j)*c'(j'),-'o ,-.a 
j j '  

x exp [ - i ( sU)+  s u')) t /4k]  

x {sin [(s u ) -  sU')) t /4k]/[s  u ) -  sU')]t/4k} (16) 

where the matrix element of the absorptive potential 
is given by 

! ! • ! x ,¢ '~( j )  Ujj, = ~'  ,--a'r'tJ')* Ua'-al exp (~q~c,,-a)t~c, . (17) 
G G '  

In accordance with our discussion in § 2 it is assumed 
that U~ has been absorbed into s and so the G = G' 
term is omitted from the double sum in (17) (hence 
the prime). The first term in (16) is the familiar 
elastic-diffraction amplitude, the second is the first- 
order correction due to absorption. This will provide 
a good approximation to total absorptive effect pro- 
vided U~j.t/2k,~ 1 for all j and j ' .  Absorptive poten- 
tials are usually considerably weaker than the elastic 
potential (e.g. Table 1), and so in fairly thin crystals 
it is not difficult to meet this condition. For any 
thickness, of course, the correct amplitudes can be 
obtained by a full diagonalization of the non- 
Hermitian many-beam equations. Before discussing 
the first-order correction in detail, we show how it 
can also be derived using time-independent perturba- 
tion theory. 

Here we look at the effects on the Bloch waves 
themselves, and derive a set of perturbed q)(J) which 
still propagate with constant amplitude. It must be 
remembered, however, that this excitation amplitude 
will also be perturbed from its elastic value of C(o j)*. 
The standard results of first-order perturbation theory 
(e.g. Schiff, 1968) applied to the many-beam 
equations (4) give corrections (Sr'cJ),--c and 6s (j) to the 
Bloch wave coefficients and transverse energies 
respectively, where 

~t ,~ ( j )  t ( s ( j )  t,(J')~ql'-'(J') • ~G = - i  E [Ujj'/ -~' JJ'~G 
j ' ¢ j  

and (18) 
S (j)  = - i U ~ j  

and the matrix elements are defined in (17). The 
first-order change in the diffraction amplitude can 
therefore be built up from the first-order changes in 
c(J) s (j) and the excitation amplitudes, ~e (j) Aa now G , * 

becomes 

AG = Y~ C(o j)*r'(j),--c exp ( - i sU)z /2k )  
J 

+ Y~ [ ( -  iz / 2k ) C(o j)* c'u) ~s c 
J 

+ C(o j)*~r-'(j),-,,.-, a + ~,~"(J) r-'(J)],_.G J 

X exp ( - i sU)z /2k )  + . . . .  (19) 
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6e u) is determined by the boundary condition that 
at the entrance surface z = 0 the first-order correction 
term must vanish. This is satisfied provided 

C (J)* "q/~ (j) ~E (j) g~ (j) Y, o ~,~o = - 2  ~ o  (20) 
J j 

from which we find [using (18) and the orthogonality 
of the Bloch waves] 

6e(J)=-i ~, [Uj,J(s(J)-s(f))]C<of)*. (21) 
j'~j 

Equations (18), (19) and (21) can then be combined 
to give the total first-order change in Ao which, not 
surprisingly, agrees with (16). We note in passing that 
it is more usual to put the change in the transverse 
energy into the exp ( - i sU)z /2k)  factor rather than 
expand this to first order, as in (19). Although this 
may be a useful approximation, the resulting ampli- 
tudes cannot be more accurate than first order in 
U'(R); to go beyond this it would be necessary to 
consider higher-order corrections to both the Bloch 
wave coefficients and the transverse energies. To make 
the link between time-dependent and time-indepen- 
dent treatments it is important to compare like with 
like, and so we must work in both cases with the 
genuine first-order correction. 

Although the result is the same, the time-indepen- 
dent derivation shows clearly where the terms in (16) 
arise. In (19), both Rf'~(J) ~e (j) ~"-'G and contain sums over 
j ' ,  so these terms are the origin of the j # j '  contribu- 
tions in (16). These terms arise from the perturbation 
of the eigenvectors in (18). The j = j '  terms in (16) 
come from the 6s ~j) part of (19) and therefore arise 
from the perturbation of the eigenvalues. It follows 
that if, as is often the case, only the perturbation of 
the eigenvalues is considered, a substantial part of 
the overall first-order change of the diffraction ampli- 
tudes is neglected. Rez (1979) makes a similar point 
but his analysis concentrates on application to cen- 
rosymmetric crystals. The difference between thej  = j '  
and j # j '  terms is very closely related to the depen- 
dent/independent Bloch wave result in inelastic scat- 
tering theory (e.g. Bird & Wright, 1989, and references 
therein). The j = j '  terms (independent waves) tend 
to dominate in thicker crystals because these terms 
increase linearly with thickness, while the j # j '  terms 
oscillate. However, in specimens whose thickness is 
less than the significant extinction distances (i. e. when 
t < 4k/[s u ) -  s(J')[ for the important j and j ' )  the j ~ j '  
term (dependent waves) can provide an equally sig- 
nificant contribution. 

The different effects of the j - - j '  and j # j '  terms in 
(16) are clearly demonstrated in two-beam theo'ry (see 
also Gevers et al., 1966; Snykers et al., 1977). Here, 
the many-beam equations (4) reduce to the 2 x 2  
equation 

W + s U  ) Uexp(-iq~G)~{C~oJ)~ 
U exp (hpG) _ W + s ( j  ) ] \ r . , ( j ) l=O (22) "-'G / 

where the deviation parameter is given by W =  
G . ( K + G / 2 )  and U=[Uol .  The Bloch wave 
coefficients become 

C(o 1)= 2-1/211 + W / (  U2+ W2)1/2] 1/2 

C(o 2)= 2-1/2[ 1 - W~ ( U 2 + W2)u2] u2 

C(1) +exp (iq~o)C(o 2) (23a) G 

C(2) -exp  (i~oc)C(o 1) G "~" 

with corresponding eigenvalues 

s (1) = - (  U2+ wE) u2, S C2) = ( U2+ W2) u2. (23b) 

These expressions can be used in (16) and (17) to 
produce the first-order change in the two-beam ampli- 
tude. The matrix elements (17) become 

U~,I = _ U~,2 _~_ [ U U t / (  U 2 ..~ W 2) 1/2] cos  (A(~OG) (24a) 

U~,2 = U ~  = iU' sin (Aq~o) 

--[ W U ' / (  U 2--k W2) 1/2] cos  ( A ~ G )  

(24b) 

where U ' =  [ U~;[. The diffracted amplitude, correct to 
first order in U', is then 

AG = iU exp (i~,G) 

xsin [(U2+ W2)1/2t/2k]/(U2+ W2) ~/2 

x { 1 + ( U ' / U )  sin (za~pc) 

+ i[ W2/( U 2 + W2)](U' /U)  cos (A~oG)} 

- { e x p  (iq~o)( U' z /2k)[  U2/( U2 + W2)] 

xcos [ (U 2+ W2)U2t/2k]cos(Aq~G)}. (25) 

The factor of I in the first term represents the unper- 
turbed amplitude, the remainder of this term is the 
absorption correction which arises from the perturba- 
tion of the eigenvectors [i.e. from the off-diagonal 
terms, (24b)]. The second term is produced by the 
diagonal matrix elements in (24a) which represent 
the contribution from perturbation of the eigen values. 
This term is exactly what is obtained if we take the 
standard expressions for absorption-affected two- 
beam amplitudes, which include only eigenvalue 
changes (e.g. Hirsch et al., 1977), and expand them 
to first order in U'. To find the diffracted intensity 
we take the modulus squared of (25). Because this 
expression is correct only to first order in U', the 
same must be true of the intensity. To this order, only 
the sin (A¢o) part of the first term contributes because 
the remaining parts are out of phase with the basic 
amplitude by a factor of i. We therefore obtain 

Io = [ U 2 -~- 2 UU' sin (Aq~o) ] 

xs in2[(U2+ wE)U2t/2k](U2+ W:) -1. (26) 

The two-beam intensity is simply modified by a cor- 
rected value for U2, which is precisely the first-order 
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expression for I U~tl 2 in (8). The same +G, - G  asym- 
metry in non-centrosymmetric crystals is therefore 
found in two-beam theory and, importantly, is found 
to be contained entirely within the first-order changes 
to the eigenvectors (Snykers et al., 1977). It follows 
that even if an absorptive potential is used which 
allows for the phase difference A~c, its full effects 
will be observed only if absorption is included non- 

perturbatively, or if changes to the eigenvectors are 
taken into account. 

which control the strength of scattering between 
different reflections, and if this changes by the order 
of a few percent it is reasonable to assume, just as 
we found in two-beam theory, that the diffracted 
intensities will change by similar amounts. There is 
a clear need to perform dynamical calculations, to 
simulate both images and diffraction patterns, on a 
range of non-centrosymmetric crystals in order to see 
just how important the effects of a non-zero A~pc can 
be. 

4. Discussion 

Although perturbation theory may provide an excel- 
lent approximation, is it useful to include absorption 
this way? The analysis of § 3 shows that it is essential 
to include the effect on the eigenvectors, in which 
case it is necessary to evaluate the matrix element 
U~j,, (17), for everyj andj ' .  In an N-beam calculation 
there are N 2 of these, each of which involves N 2 
sums over reciprocal-lattice vectors. First-order per- 
turbation theory therefore becomes an N 4 procedure, 
which, as N increases, exceeds the N 3 operations 
required for matrix diagonalization. This N 3 depen- 
dence is the same for non-Hermitian and Hermitian 
matrices; thus we conclude that as the size of a 
many-beam calculation increases, it becomes more 
time consuming to use perturbation theory than to 
diagonalize the non-Hermitian matrix. It follows that 
for a general-purpose program to compute diffracted 
intensities it will almost certainly be best to include 
absorption non-perturbatively. 

Our analysis of the influence of a non-zero A~p¢ in 
non-centrosymmetric crystals has concentrated on 
two-beam theory. To go beyond this in any general 
way is very difficult- Snykers et al. (1977) and Bird, 
James & King (1989) discuss particular examples of 
the effect in three-beam diffraction. It is for this reason 
in § 2 that we concentrated on the change which A¢c 
induces in the basic Fourier coefficients. In any 
dynamical diffraction situation it is these coefficients 

I thank J. A. Eades and A. R. Preston for helpful 
discussions and Q. A. King for help with the com- 
puting. 
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